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ABSTRACT 
This paper deals with the control of the wing rock phenomena of a delta wing aircraft. A control technique is 

proposed to stabilize the system. The controller is a BACKSTEPPING controller. It is appeared that the 

proposed solution of control guarantee the asymptotic convergence to zero of all the states of the system. To 

show the performance of the proposed controller, simulation results are presented and discussed. It is found that 

the control scheme work well for the wing rock phenomena of a delta wing aircraft.   
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I. INTRODUCTION 
Wing rock motion  is a self-induced, limit-cycle 

rolling motion experienced by flight aircrafts with 

small aspect-ratio wings, or with long pointed 

forebodies at high angles of attack [1]. This 

phenomenon has been studied by many researchers, 

(see for example [1],[3],[4]) because of its 

importance in the stability of an aircraft during high 

angle of attack maneuvers. It was also reported in [6] 

that the oscillation that does not have a limit cycle 

can happened at an 80/65 degree double delta wing.  

Wing rock is a nonlinear phenomenon 

experienced by aircraft in which oscillations and 

unstable sideslip behavior are experienced [9]. This 

instability may diminish flight effectiveness or even 

present a serious danger due to potential instability of 

the aircraft [1]. Wing rock has been extensively 

studied experimentally, resulting in mathematical 

models that describe the nonlinear rolling motion 

using simple differential equations as in [7],[8]. 

The wing rock model for a delta wing aircraft 

used in [1] is considered in this project. Wing rock is 

usually modeled as self-induced, pure rolling motion, 

which causes the rolling moment to be a nonlinear 

function of the roll angle  and the roll-rate p . The 

coefficients of such nonlinear function are obtained 

by curve fitting with experimental data at specific 

values of angle of attack. In addition, yawing 

dynamic is added to the nonlinear function by 

considering the yawing rate r = - ( / t  ) and 

ignoring the nonlinear term involving    due to its 

small value compared  with the other nonlinear terms.  

The wing rock motion is illustrated in figure 0. 

 
Figure 0.  Wing Rock motion 

 

II. MODEL   OF THE WING ROCK 

PHENOMENON 
Define the following variables: 

 :  Bank angle “roll angle” 

p  =: Roll-rate (rad./s) ( /p t   ). 

 :  Aileron angle. 

 :  Sideslip angle.  

t




:  Sideslip rate of change.  

The differential equations describing the wing 

rock phenomenon are obtained using experiments 

and data curve fitting, such that  [1]: 

The rolling moment is described by the 

following differential equation: 

  LLpfp
t

p





),(            (2.1) 

where   is the sting damping coefficient, 

 LL ,  are parameters. 

The yawing moment is described by the 

following differential equation: 

 pN
t

NN
t

pr 








)(

2

2 



        (2.2) 
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where pr NNN ,,  are parameters. 

The differential equation for the first order aileron actuator is taken to be: 

 

 /)(/  ut                                                                                                                                     (2.3) 

where  is the actuator time, and u is the controller. 

 

The nonlinear self-induced rolling function ( , )f p using five terms curve-fit [1] as follows: 

2

5

2

4

3

321),( papapapaapf                                                                                           (2.4) 

 

where coefficients 1a , 2a , 3a , 4a , 5a  are dependent on the angle of attack, taken to be  0.2 radian. 

 If the state variables are denoted by: ( , , , , / )Tx p t       then the state equations can be written as 

follows: 

1 2( ) ( )x t x t  

2 2 3 2

2 1 1 2 2 1 2 1 2 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x t x t x t x t x t b x t b x t x t         

           3 4 5( ) ( ) ( )rL x t L x t L x t     

3 3( ) ( )x t kx t ku    

4 5( ) ( )x t x t  

5 2 4 5( ) ( ) ( ) ( )p rx t N x t N x t N x t                                                                       (2.5) 

The parametric values for the aerodynamics are 

 

Table 1: parametric values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1a  -0.05686 

2a  0.03254 

3a  0.07334 

4a  -0.3597 

5a   1.4681 

1  0.354* 2a -0.001 

2  0.354* 3a  

1b  0.354* 4a  

2b  0.354* 5a  

2  0.354* 1a  

L  1 

L  -0.02822 

rL  0.1517 

k  1/0.0495 

pN  -0.0629 

N  1.3214 

rN  -0.2491 
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As an oscillating system, the dynamics of wing rock phenomenon with no control will be unstable and 

oscillating with limit cycle motion. The unstable behavior on the aircraft’s wings appears with undesirable 

yawing motion in the flight, which might cause serious damage. To see such instable oscillating dynamics of the 

phenomenon, we can plot the states with no control ( u =0). Figure 1 – Figure 5 show the plots of 

, , , ,p
t


  




 respectively. 

 
Figure 1:  =  roll angle (rad.) 

 

        
Figure 2 p = roll-rate (rad./s)                                           Figure 3  = aileron angle (rad.) 

 

 
Figure 4   sideslip angle (rad.) 
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Figure 5  / t   sideslip rate of change (rad/s) 

 

It is clear from figures 1-5 that the dynamics of the system is oscillatory. Notice that the aileron deflection 

angle is zero because the input is zero  (with no control), and zero initial value of the x (3) state. 

The obtained limit cycle response in undesirable from weapon aiming and delivery considerations, and also 

because it may lead to structural damage in the aircraft (or other mechanical systems) thereby causing the wings 

to come off.  

The next plots show  the  phase plots, x(2) versus x(1) and x(5) versus x(4). Such plots show the boundaries 

of the limit cycle motion of the system. 

 
Figure 6  Roll rate vs. Roll angle 

 

 
Figure 7 sideslip Rate vs. Sideslip angle 
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Transformation Function T (x)  

The dynamic of the wing rock phenomenon is highly nonlinear. Therefore, a nonlinear transformation 

( )z T x   [2] will be used to transfer the dynamic model of the system into a form that will simplify the design 

of nonlinear control schemes.  

The transformation ( )z T x  is defined such that: 

 

 

 

 

 

 

 

                                                                                                                                                                            (2.6) 

 

 

 

 

 

 

 

 

The inverse transformation  
1( )x T z  exists and it is as follows. 
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Hence, the dynamic model of the wing rock phenomenon can be written as,   

1 1 4 5

2 4

3 5

4 2 4 5

2 2 3 2

5 1 1 2 2 1 2 1 2 2 1 2

2

3 4 5 5 2 4 5

( )

( ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )) ( )

p r

p r

p

r r p r

z N x N x x

z N x

z N x

z N N x N x N x

z N N x t x t x t x t b x t b x t x t

L x t L x t L x t N x N N N x N x N x





 



    

  

  

 
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  
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1 2

2 3

3 4

54

5 ( ) ( )

z

z

z

z

q x g x u

z

z

z

z

z









 











                                                                                                                                      (2.8) 

 

where: 

           

                                                                                                                                                                                                                                                           

 

 

 

 

 

 

It can be seen that the model given by (2.8) has a form that simplifies  the design of  different nonlinear 

controllers. There are many teqqnuqes that deals with wing rock phenomenon like fuzzy control [10], [11],  

neural-network control [12] and state feed back control [13] whrer in this project different control algorithms 

will be designed for the wing rock phenomenon using the model given by (2.8), then using the transformation 

(2.6) –(2.7) to convert the designed control schemes to the original domain. 

 

III. BACKSTEPPING   CONTROLLER FOR THE WING ROCK PHENOMENON 
Backstepping design is a powerful tool for designing controllers because it is a systematic technique. The 

idea of the backstepping design  is to divide the system into sub-systems and solve for controllers for each 

subsystem, the final controller is used to control  the whole system. A backstepping controller for the wing rock 

phenomenon is designed in this chapter.  The system under consideration has five state equations so the first 

sub-system to design a controller for is the first equation,  then the second controller uses  both the first and the 

second equations and so on until all the states of  the system are included.  

 

3.1 Preliminaries about Backstepping design  

Consider a system of the following form: 

( ) ( )f g

u

   



 






 

Assume the system can be stabilized by a state feedback controller such that: 

( ) ( (0) 0)       

That means 

( ) ( ) ( )f g        is asymptotically stable. Let a lyaponuv function be ( )V   such that: 

( ) ( ) ( )
V V V V

V f gu w
t t


  

  

    
        
    

   

  

where W is positive definite 

The system can be Rewritten such that: 

( ) ( ) ( ) ( )[ ( )]f g g             

Now let ( )z     , then system can be rewritten as: 

2 2 3 2

1 1 2 2 1 2 1 2 2 1 2 4 5

2

5 2 4 5 3

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))

( )

( )

( )

( )

[

]

p r

r p r

p

N N x t x t x t x t b x t b x t x t L x t L x t

N x N N N x N x N x

q x

L k x t

g x kN N L

 

  

 



         

    




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[ ]f g gz     , z u v    

 
 

3.2 Design of the Feedback linearization Controller 

Recall that the wing rock model can be written in the transformed domain as follows: 

1 2

2 3

3 4

54

5 ( ) ( )

z

z

z

z

q x g x u

z

z

z

z

z









 











                                                   (3.1) 

 

Define  sub-system 1  as follows:  

1

1 2

2

zz

z u








                                                                                                                                                            (3.2) 

 

System (3.2) can be written in compact form as: 

1 1 1z f g u 


                                                                                                                                                    (3.3) 

Let the first controller be: 

12 1 ( )zz z                                                                                           (3.4) 

 

Define 1  such that  

1 2 1z z                           (3.5) 

 

The closed loop for sub-system 1  is:  

1 1zz                                                                                                                                                              (3.6) 

 

It is obvious that the above system is stable, we can use the following lyaponuv function: 

                                                                                                                                                                            (3.7) 

                          

The time derivative of 1V  is as follows: 

2

1 1 1 1 0V z z z                             (3.8) 

The first controller which will be the basic controller for the coming design can be evaluated using a 

derived equation for the backstepping controller  such that: 

2

1 1

1

2
V z
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1 1
1 1 1 1 1 1 2 1[ ( ( ))] * [ ] ( 1)( )

V
u f g z g k k z z

z z


 

 
       
 

                                                            (3.9) 

where k is a positive scalar. 

 

Now we can prove the stability of sub-system 1 by using the following Lyaponuv function: 

2

1 2 11

1
[ ]

2
a V z zV                                                                                                                                     (3.10) 

Define  sub-system 2  as follows:  

 

 

 

                                                                                                                                                                          (3.11) 

 

 

Sub-system (3.11) can be written in compact form as: 

2 2 2z f g u 


                                                                                                                                                (3.12) 

 

Let the second controller be equal to the controller (3.9) such that, 

 

2 1 23 1 ( 1)( ) ( )k z z zz u                          (3.13) 

Define 2  such that  

2 2 13 1 3 ( 1)( )u k z zz z                           (3.14) 

 

The closed loop for sub-system 2  is:  

 

 

                                                                                                                                                                          (3.15) 

 

 

 

Consider the following Lyaponuv function: 

2 2 2

2 1 2 1 1 2 11

1 1 1
[ ] [ ]

2 2 2
a V z z z z zV V                                                                                         (3.16) 

The second controller will be evaluated as the follows: 

2 2
2 2 2 2 2 2

2 3 2 1 3

[ ( ( ))] * [ ]
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   
 

        

                                                                                   (3.17) 

The stability can be proven for the second sub-system by using the following Lyaponuv function: 

2 2 2 2

2 2 1 2 1 2 12 3

1 1 1 1
[ ] [ ] [ ( 1)( )]

2 2 2 2
a V z z z k z zzV                                                            (3.18) 

 

Define  sub-system 3  as follows:  
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Sub-system (3.19) can be written in compact form as: 

3 3 3z f g u 


                                                                                                                                                 (3.20) 

 

Let the third controller to be as follows:  

                                                                                                                                                                          (3.21) 

                                                                                                                                       

Define 3  such that  

3 2 3 2 1 34 2 4 ( 1)( ) ( )(1 ( 1))u k z z z z k k kzz z                           (3.22) 

 

The closed loop system is:  

 

 

 

                                                                                                                                                                          (3.23) 

 

 

 

 

The following Lyaponuv function is considered for  sub-system 3: 
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The third controller is  evaluated as follows: 
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The Lyaponuv equation that proves the stability of sub-system 3 is: 

 

 

              (3.26) 

 

 

 

Define  sub-system 4  as follows:  
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Sub-system (4.27) will be written in compact form as: 
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Let the fifth controller be as follows:  
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The closed loop system is:  
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The following Lyaponuv function is considered for the stability of  sub-system 4: 

 

 

                                                                                   (3.32) 

 

 

 

The fourth controller is  evaluated  as follows: 
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The equation above can be simplified such that: 

 

 

(3.34) 

 

Hence, we obtain: 
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The nonlinearities of the system need to be canceled out. Therefore, the final or global  controller for the 

wing rock phenomenon is such: 
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                                                                       (3.36) 

 

The stability of the closed loop system using controller  (4.36) can be checked by  using the following Lyaponuv 

equation: 

2

4 44
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2
a VV                        (3.37) 

The derivative of the lyapunov function (4.37)  is as follows: 

4 4 44
0a VV                         (3.38) 

 

3.3 Simulation results 

The performance of the closed loop system is simulated using the MATLAB software and the results are 

plotted for the states with initial values =[0.2  0  0  0  0] and k=1. Figure 8 – Figure 12 show the plots of 

, , , ,p
t


  




 respectively. 

 
Figure8  Roll angle (rad.) 
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Figure 9  Roll-rate  (rad/sec) 

 

        
Figure 10  Aileron deflection angle (rad.)              Figure 11  sideslip angle  (rad.) 

 

 
Figure 12 sideslip rate (rad./sec) 

 

IV. Conclusion 
The above figures show that all the states of the system converge to zero asymptotically. Hence, it can be 

concluded that the proposed backstepping controller works well for the stabilization of the wing rock 

phenomenon. 
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